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Abstract: In this paper, a technique for modeling frictional phenomena among several bodies
that move relatively is proposed with the purpose of optimizing the dynamic simulation of
a complex system such as the driveline of a vehicle based on a dual clutch transmission.
The proposed method considers together the inertial and frictional properties of the different
subsystems, but decouples a main dynamics, that describes their average motion and does not
depend on friction, from a proper number of relative dynamics. In this way, for each of these
dynamics a standard static friction models can be used, leading to a very efficient numerical
simulation. In this sense, the method adopted can be considered an enhancement of Karnopp
model.
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1. INTRODUCTION

In many applications, friction (and in particular Coulomb
and static friction) is only a side effect of the mechanical
implementation, that produces undesired behaviors and
energy losses. For this reason, it is desirable to reduce as
much as possible its influence on the mechanical system
and, in many cases, Coulomb and static friction can be
neglected. Conversely, in some applicative fields, such as
the automotive field, Coulomb and static friction play
a fundamental role. Consider for instance the case of
clutches and similar devices, that exploit the capability
of the friction of nullify the relative velocities between
two contacting surfaces to synchronize different shafts and
modulate the power transmission from the engine to the
wheels. The dry clutch is adopted in almost all commercial
cars, and also the synchronizers of traditional gearbox are
based on Coulomb friction. For a complete overview about
the use of clutches and therefore friction within automotive
transmission refer to Jurgen (2000).
The digital simulation of such systems may be computa-
tionally complex and time-consuming because of the hard
nonlinearities of the friction characteristic, that produces
chattering, when the speed is zero or close to zero. In
particular, in the case of clutches, their behavior changes
dramatically according to the fact that they are engaged
(relative speed null and static friction between the two
plates) or not (in this case Coulomb friction must be
considered). For this reason, many authors prefer to switch
among different models (with different sets of equations)
according to the state of the clutch (and therefore the type
of friction, static or dynamic, acting on the system), see
M.Kulkarni et al. (2007); Zanasi et al. (2008); Jiang et al.
(2009). In this paper, a technique that allows to simulate
(without the need of switching among several models)
dynamic and static friction in complex systems, where
frictional phenomena arise among several bodies that move

relatively, is firstly presented; then the proposed method
is applied to a double-clutch that synchronizes the input
shaft connected to the engine with the two shafts linked
to the gearbox.

2. FRICTION MODELS

A number of models for friction simulation and compen-
sation have been proposed in the literature, ranging from
classical static models (see Karnopp (1985); Armstrong-
Hlouvry et al. (1994); Olsson et al. (1998)) to more com-
plex dynamic models, such as the Dahl model by Dahl
(1968), the Bliman and Sorine model by Bliman and Sorine
(1995), and the Lugre model by de Wit et al. (1995),
among many others. In particular, it is necessary to high-
light that in all the applications where friction at rest plays
an important role it is necessary to consider, besides the
dynamic friction due to the motion, i.e. Coulomb and vis-
cous friction, the frictional phenomena that arise when the
velocity is null. The stiction (static friction) counteracts
the external forces below a certain threshold and therefore
prevents the object from moving. For this reason, it is clear
that the friction at rest cannot be described as a function
of only velocity but depends also on the applied forces.
Moreover it is also clear that frictional phenomena and
inertial phenomena are closely related, and therefore they
should be modeled together.
A simple, although quite complete description of the fric-
tion force acting on a system with velocity v is

Ff =







F (v) if v 6= 0

Fe if v = 0 and |Fe| < Fs

Fssgn(Fe) otherwise

(1)

where F (v) is an arbitrary function that reproduces the
classical characteristic of dynamic friction, Fe are the ex-
ternal forces acting on the system, and Fs is the maximum
value of the stiction. A quite commonly used expression of
the dynamic friction force is
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Fig. 1. Sketch of the simulink block-scheme for the efficient
simulation of the dynamics of a mass m affected by
static and dynamic friction.

F (v) =
(

Fc + (Fs − Fc)e
−|v/vs|

α
)

sgn(v) + Fvv (2)

where the parameters Fc and Fv denote respectively the
minimum level of Coulomb friction and the the viscous
friction coefficient, while vs and α are empirical param-
eters to be properly set according to the experimental
characteristic of the friction, see Armstrong-Hlouvry et al.
(1994). Note that some of the coefficients Fs, Fc, Fv may be
zero according to the specific phenomena to be modeled.
For instance in the model of a dry clutch, the viscous
friction between the two plates is negligible. Moreover,
the coefficient may be not a constant but a function of
the normal force Fn applied to the surfaces in contact. In
general, the instantaneous values of force friction are

Fc(t) = µcFn(t), Fs(t) = µsFn(t).

where µ is the coefficient of friction. One of the major
simulative problem that arises when the model (1) is
adopted is the need of detecting when the velocity becomes
zero. A simple remedy suggested by Karnopp (1985)
consists in defining an interval in which the velocity v
is forced to be zero and the friction force is computed
as a saturated version of the external force. A commonly
recognized drawback of the Karnopp model is the fact
that it is strongly coupled with the rest of the dynamic
system, since the external force is an input of the model.
But, as already mentioned, this is not a weak point of the
model, but a simple consequence of the fact that frictional
phenomena, in particular at rest, are closely connected
with the inertial behavior of the systems that they affect.
As a consequence they should modeled and simulated
together. In this perspective, the simulation of a mass
m subject to an external force Fe and to the friction, as
defined in (1), can be performed by numerically integrating
the dynamic equation

mv̇ = Fe − Ff (3)

considering two different expressions of the net force
applied to the system according to the value of v, i.e.

mv̇ =

{

Fe − F (v), if v 6= 0

max(|Fe| − Fs, 0) · sign(Fe), if v = 0
(4)

The switch from the first expression to the second one must
occur when a zero-crossing of the velocity v is detected. At
the same time v must be hold to zero until the external
force overcomes the stiction value Fs. In this way, the
chattering and other simulative problems that may arise
at zero velocity because of the hard non-linearity of the
friction are prevented, since as soon as a zero-crossing is

detected the velocity is maintained at zero. In Fig. 1 a
sketch of the simple simulative scheme corresponding to
the above procedure is reported.
The main advantages of this scheme with respect to the
other models of friction, and in particular dynamic models,
is that it does not require additional parameters (such as
stiffness and damping coefficients of bristles in the Lugre
model, see de Wit et al. (1995)), whose value is hardly
estimable from experimental data. Nevertheless, although
quite simple and computationally efficient, the scheme of
Fig. 1 has a significant drawback. As a matter of fact it
is not directly applicable to systems composed by several
moving bodies that interact by friction, as in case of a
clutch, where the friction is exerted between two rotative
elements. Aim of this paper is to extend the use of the
model of Fig. 1 to this class of systems.

3. SIMULATION OF MULTI-BODY SYSTEMS
INTERACTING BY FRICTION

In this section, the model illustrated in previous section
is adapted to correctly simulate the behavior of systems
composed by a number of objects that interact in pairs
by means of frictional interfaces. Since, the goal of this
research concerns the simulation of clutches used in the
automotive field, rotative systems are taken into account,
but the same considerations hold true for translating
systems.

3.1 Two masses model

Given the system of Fig. 2(a), composed by two rotating
bodies with inertia J1 and J2 respectively, described by
the dynamic model

{
J1ω̇1 = F1 − τ12(ω1 − ω2)

J2ω̇2 = F2 + τ12(ω1 − ω2)
(5)

where ωi and Fi are the angular velocity and the external
torque related to the i-th mass and τi,i+1(·) denotes the
friction at the interface between the i-th and the (i + 1)-
th object, it is possible to obtain the same formulation
as in (3), by means of a proper congruent state space
transformation. Firstly, it is convenient to rewrite the
system (5) in a matrix form as

JΩ̇ = F −D
T
τ (DΩ) (6)

with

J =

[
J1 0
0 J2

]

, Ω =

[
ω1

ω2

]

, F =

[
F1

F2

]

, D = [1 − 1]

and τ = τ12. Then, by applying the transformation matrix
T proposed by Zanasi et al. (2001)

τ1,2

ω1 ω2

F1 F2

J1 J2

ω1 = ω2 = z1

F1 + F2

J1 + J2

(a) (b)

Fig. 2. Two rotating inertias interacting by friction (a) and
equivalent system obtained when z2 = 0 (b).
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Ω = Tz, z =

[

z1

z2

]

=

[
J1ω1+J2ω2

J1+J2

ω1 − ω2

]

, T =

[
1 J2

J1+J2

1 −J1

J1+J2

]

the original system (6) can be transformed in

T
T
JT

︸ ︷︷ ︸

JT

ż = T
T
F

︸ ︷︷ ︸

F T

− (DT )T
︸ ︷︷ ︸

DT

τ (DTz) (7)

with

JT =

[
J1 + J2 0

0 J1J2

J1+J2

]

,F T =

[
F1 + F2

J2F1−J1F2

J1+J2

]

,DT =

[

0

1

]

.

Therefore, the expression of the dynamic system in the
new state variables zi becomes

[
J1 + J2 0

0 J1J2

J1+J2

][

ż1

ż2

]

=

[
F1 + F2

J2F1−J1F2

J1+J2

]

−

[

0

τ12

]

where it is possible to recognize a main dynamics

(J1 + J2)ż1 = F1 + F2 (8)

describing the average motion of the system, in which the
internal torque due to the friction between the two inertias
does not appear (and consequently simulation problems
are not present), decoupled from the relative dynamics
that describes the differential motion of the two bodies:

J1J2
J1 + J2

ż2 =
J2F1 − J1F2

J1 + J2
− τ12(z2). (9)

Note that (9) has exactly the same structure of (3), with
an inertia JR = J1J2

J1+J2

subject to the equivalent torque

FR = J2F1−J1F2

J1+J2

and to the friction τ12, that depends only

on the (relative) velocity z2. Therefore, in order to simulate
the relative dynamics it is possible to adopt the scheme
illustrated in the previous section.
Another interesting properties of the transformed system
is that at rest the value of the friction is equal to FR, with
the obvious saturation to Fs. This result is well-known
(see Serrarens et al. (2004) among many others), but it is
worth noticing that the approach based on the congruence
transformation T provides a systematic procedure for the
computation of the friction at zero velocity. As a matter of
fact, it is sufficient to solve the algebraic equation obtained
from (9) by assuming ż2 = 0. This result is quite intuitive
since the static friction opposes the motion and, therefore,
counteracts all the external torques in order to guarantee
that the relative velocity remains zero. When z2 = 0, the
system is completely described by state variable z1 and
by the equation (8); as shown in Fig. 2(b) it behaves
like a unique inertia J1 + J2, subject to the resultant
of all the external torques. Note that, by substituting
τ1,2 = J2F1−J1F2

J1+J2

in both the equations of the original

system (5) we just obtain (8).

3.2 Three masses model

Given the system composed by three rotating masses
shown in Fig. 3, that are subject to external torques and
friction between the contacting masses, as described by the
system of differential equations







J1ω̇1 = F1 − τ12(ω1 − ω2)

J2ω̇2 = F2 + τ12(ω1 − ω2)− τ23(ω2 − ω3)

J3ω̇3 = F3 + τ23(ω2 − ω3)

(10)

J1 J2 J3

τ1,2 τ2,3

ω1 ω2 ω3

F1 F2 F3

Fig. 3. Three rotating inertias interacting by friction
(double dry clutch).

one may decouple the main dynamics that does not de-
pends on the internal frictional torques from the other
relative dynamics. By considering the state vector

z =





J1ω1+J2ω2+J3ω3

JTot

ω1 − ω2

ω2 − ω3





related to the vector of the velocities by Ω = Tz, with

T =







1 J2+J3

JTot

J3

JTot

1 − J1

JTot

J3

JTot

1 − J1

JTot

−J1+J2

JTot







where JTot = J1 + J2 + J3, the system is translated into
the form

JT ż = F T −DT τ (D
T
Tz) (11)

with

JT =







JTot 0 0

0 J1(J2+J3)
JTot

J1J3

JTot

0 J1J3

JTot

(J1+J2)J3

JTot







F T =






FT 1

FT 2

FT 3




 =







F1 + F2 + F3

−J1(F2+F3)+(J2+J3)F1

JTot

J3(F1+F2)−(J1+J2)F3

JTot






, DT =






0 0

1 0

0 1




 .

By pre-multiplying both terms of (11) by J
−1
T one obtain

the system of dynamic equation

ż1 =
FT 1

JTot
(12)

ż2 =

(
1

J1
+

1

J2

)

(FT 2 − τ1,2)−
1

J2
(FT 3 − τ2,3) (13)

ż3 =−
1

J2
(FT 2 − τ1,2) +

(
1

J2
+

1

J3

)

(FT 3 − τ2,3) (14)

where the friction terms τ1,2 and τ2,3 depend on z2 and
z3 respectively. For their computation four distinct cases
may occur:

(1) if z2 6= 0 and z3 6= 0 the friction depends only on the
relative velocity, therefore τ1,2 = F (z2), τ2,3 = F (z3),
where the function F (·) is defined by (2). Obviously,
the characteristic parameters of the function F (·) may
be different in the two cases;

(2) if z2 = 0 and z3 6= 0, then τ2,3 = F (z3) while the
value of τ1,2 is determined by setting the right side of
(13) equal to zero:

τ̃1,2 = FT 2 −
J1

J1 + J2
(FT 3 − τ2,3(z3)).

In this case, if |τ̃1,2| < Fs then τ1,2 = τ̃1,2 and ż2 = 0;
otherwise, τ1,2 = Fs · sign(τ̃1,2);
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Ωż1

ż2
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Fig. 4. Sketch of the simulative scheme of the system
composed by three inertias.

(3) the case z2 6= 0 and z3 = 0 is dual with respect to the
previous one. Therefore, τ1,2 = F (z2) while the value
of τ2,3, determined by setting the right side of (14)
equal to zero, is

τ̃2,3 = FT 3 −
J3

J2 + J3
(FT 2 − τ1,2(z2)).

If |τ̃2,3| < Fs then τ2,3 = τ̃2,3 and ż3 = 0; otherwise,
τ2,3 = Fs · sign(τ̃2,3);

(4) when z2 = 0 and z3 = 0, the friction values can be
computed from (13) and (14). By setting the right
side of both equations equal to zero we obtain a
system whose solution is

τ̃1,2 = FT 2, τ̃2,3 = FT 3. (15)

If |τ̃i,i+1| < Fs, i = 1, 2 then τi,i+1 = τ̃i,i+1 and
żi+1 = 0; otherwise, τi,i+1 = Fs · sign(τ̃i,i+1). Suppose
that |τ̃1,2| > Fs; from a formal point of view, the
solution found is not correct (since τ1,2 = τ̃1,2 is not
feasible), and should be recomputed by considering
the term τ1,2 = Fs · sign(τ̃1,2) as an input of the
problem and solving the equation obtained from (14).
Nevertheless, because of the continuity of the torques
applied to physical systems and the typical small
size of the integration step used in simulation, the
error on τ2,3 is bounded and in general negligible.
Moreover, the absolute value of τ2,3 is not important
since it must simply guarantee that ż3 = 0. Note
that the possibility that both friction terms overcome
the stiction threshold at the same time instant is
rather unlikely. A similar argument holds true if
τ2,3 is the first term that overcomes the stiction
level. In conclusion, the solution expressed by (15)
is acceptable for simulation purposes, provided that
the derivative żi is forced to zero when |τ̃i,i+1| < Fs.

The values of the friction substituted in (13) and (14) allow
to correct simulate the dynamics of the system composed
by three inertias, as shown in Fig. 4, where a schematic
representation of the simulative model is reported. Note
in particular that the system switches among the different
expressions of (ż2, ż3) that depend on the friction terms

J1 J2 J3 Jn

τ1,2 τ2,3 τn−1,n

ω1 ω2 ω3 ωn

F1 F2 F3
Fn

Fig. 5. A stack of n rotating inertias interacting by friction.

τ1,2, τ2,3. Nevertheless, the dynamic model of the system,
and in particular its dynamical dimension, does not change
when two contiguous masses are stuck (that is zi = 0, if the
(i− 1)-th and i-th masses are considered) but, simply, the
related variable zi is forced to remain zero (by imposing
żi = 0) until the external torques overcome the stiction
level.

3.3 A stack of n frictional bodies
The approach shown in previous subsection for the sim-
ulation of a system composed by three masses can be
generalized to an arbitrary number of bodies (for instance
to model and simulate the behavior of a train of gears).
Given a set of n bodies Ji, that interact in pairs, as
illustrated in Fig. 5, the congruence transformation matrix

T =

















1 J2+...+Jn

JTot

J3+...+Jn

JTot

. . . Jn−1+Jn

JTot

Jn

JTot

1 − J1

JTot

J3+...+Jn

JTot

. . . Jn−1+Jn

JTot

Jn

JTot

1 − J1

JTot

−J1+J2

JTot

. . . Jn−1+Jn

JTot

Jn

JTot

...
...

...

1 − J1

JTot

−J1+J2

JTot

. . . −J1+...+Jn−2

JTot

Jn

JTot

1 − J1

JTot

−J1+J2

JTot

. . . −J1+...+Jn−2

JTot

−J1+...+Jn−1

JTot

















with JTot =
∑n

i=1 Ji, leads to a dynamic system into the
form (11), where the average dynamics

ż1 =

∑
n

i=1
Fi

JTot

(16)

is decoupled from relative dynamics

żR = J
−1
R (FR − τ (zR)) , (17)

being zR = D
T
Tz = [z2, z3, . . . , zn]

T the vector of relative

velocities, FR = D
T
TF T = [FT 2, FT 3, . . . , FT n]

T , and JR

the submatrix obtained from JT by eliminating the first
row and the first column, i.e.

JT =

[

JTot 0T
n−1

0n−1 JR

]

.

Note that the friction terms only depends on zR, and, as
in the cases n = 2 and n = 3, τi,i+1 = τ(zRi), i = 2, . . . , n.
In order to correctly (and efficiently) simulate the dy-
namics of the system, the friction torques acting between
contacting inertias can be determined according to the
following procedure. Let ξ denote the set of indexes i
that correspond to zero relative velocities zRi, and ξ the
remaining indexes for which zRi 6= 0, the friction torques
between contiguous inertias that move relatively can be
immediately obtained since they are function only of the
velocity, therefore

τi,i+1 = F (zRi), i ∈ ξ. (18)

Conversely, when the relative velocities are null, the fric-
tion values τi,i+1, i ∈ ξ, must be computed by considering
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zR, FR

zRi = 0? Yes, zRi, i ∈ ξ

No, zRi, i ∈ ξ

τi,i+1 = F (zRi), i ∈ ξ
τi,i+1, i ∈ ξ

Solve (19)
τi,i+1, i ∈ ξ

τ̃i,i+1, i ∈ ξ

|τ̃i,i+1| ≤ Fs, i ∈ ξ?Yes, τ̃i,i+1, i ∈ ξns

No, τ̃i,i+1, i ∈ ξs

τi,i+1 = τ̃i,i+1

(żRi = 0)
τi,i+1 = Fs · sign(τ̃i,i+1)τi,i+1 = Fs · sign(τ̃i,i+1)

τi,i+1, i ∈ ξns τi,i+1, i ∈ ξs

τ

Fig. 6. Flowchart for the computation of friction in the
case of n bodies.

the balance of all the torques acting on the system. In
particular, as for the three masses system, such values can
be calculated by setting the right terms of those equations
of the system (17) for which zRi = 0 equal to zero. The
expression of the friction terms τi,i+1, i ∈ ξ results

τ̃(ξ) = FR(ξ) +
((

J
−1
R

)

(ξ,ξ)

)−1

·
(
J

−1
R

)

(ξ,ξ)
·
(
FR(ξ) − τ (ξ)

)

(19)
where the subscript (p), with p set of indexes, applied
to a vector v = [v1, v2, . . . , vn]

T denotes the new vector
obtained by considering only the components vi, with
i ∈ p, while the subscript (p, q) applied to a matrix
A = [ai,j ] stands for the sub-matrix that includes only the
elements ai,j , with i ∈ p and j ∈ q. Note that the elements
of the vector τ̃(ξ) represent the real friction values only if

|τ̃i,i+1| ≤ Fs, i ∈ ξ. (20)

For the terms that meet condition (20)

τi,i+1 = τ̃i,i+1 and żRi = 0. (21)

On the contrary, if |τ̃i,i+1| > Fs, i ∈ ξ, the related friction
values must be saturated to Fs, i.e.

τi,i+1 = Fs · sign(τ̃i,i+1). (22)

In this case, as already discussed in Sec. 3.2, the solution
is not exact, but it approximates the real value.
In the general case n > 3, the computation of τi,i+1,
i = 1, . . . n− 1 according to all the possible configurations
of the system, and in particular to the fact that the relative
velocities zRi are zero or not, may become prohibitive.
As a matter of fact, the different cases are 2n−1. As
a consequence, for high values of n, it is convenient to
directly implement the equations (18), (19), (21), (22) for
the computation of the friction (see the flow diagram of
Fig. 6) and consider the dynamic equations (16) and (17).
In Fig. 7 the block-scheme representation of the simulative
model for the system composed by n inertias is shown.
Note, in particular, that by means of the power port
defined by the pair (F ,Ω), it is possible to connect the
system to the models of the other mechanical elements

-

Zero-crossing detection

Reset

J
−1
T

T
T

T

D
T
T

D
T
T

DT
F

FR

F T

1

s

z zR

ż

Ω

τ (zR)

τ[0 τT ]T

Fig. 7. Block-scheme representation of the system com-
posed by n bodies, interacting by friction.

composing the plant under investigation, as illustrated in
the example considered in the following section.

4. SIMULATION OF A DOUBLE CLUTCH

The working principle of the clutch used in dual clutch
transmission (DCT) configurations is shown schematically
in Fig. 8. It consists of two clutches that are arranged
concentrically and whose friction plates are linked to the
same shaft. Therefore, this system can be modeled as
the three mass system of Sec. 3.2, where ω2, F2 are the
velocity and the torque of input shaft connected to the
engine, while ω1, F1 and ω3, F3 are the velocities and the
torques of the shafts linked to the gearbox. The state of
the clutches (engaged, slipping, or open) and therefore the
power transmission from the engine to the gearbox can be
separately changed by modulating the pressure between
the two plates of each clutch. In order to simulate its
behavior, the clutch has been inserted in a very simplified
model of the vehicle, that takes into account only few
elements of the drive-line. In Fig. 9 a power-oriented graph
representation of the system is shown, see Morselli and
Zanasi (2006). The vehicles is modeled as an equivalent
inertia Jv subject to a friction torque bvωv, while in k1,
b1, and k3, b3 are lumped all the elastic and dissipative
effects of the drive-line. The gains R1 and R3 take into
account the two different transmission ratios of odd and
even gears. Finally, the engine is modeled as a constant
torque input (400 Nm). In Fig. 10 the velocities of the
shafts connected to the double clutch are reported. The
two clutches are engaged alternatively by properly acting
on the pressure of the two plates composing each of them
and modulating in this way the related values Fc and Fs

of Coulomb and static friction. When a clutch is activated

Clutch 1 (J1)

Clutch 2 (J3)

Input shaft (J2)

ω1, F1 ω2, F2
ω3, F3

Fn1Fn3

Fig. 8. Simplified model of a double clutch.

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

2136



-

-

-

1

s

1

s

1

s

k1

k3

b1

b3

Jv

bv

R1

R1

R3

R3

ω1

ω2

ω3

F1

F2

F3

ωv

Engine

Clutch

Elasticity driveline Gearbox Vehicle

Fig. 9. POG representation of the double clutch inserted
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Fig. 10. Angular velocities of the shafts connected to the
double clutch (a) and related variables zi (b).
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Fig. 11. Friction between the plates of the two clutches.

(and the other released) the friction works so that its
velocity reach the velocity of the input shaft (and the
related variable zi goes to zero). In Fig. 11 the values of
the friction are shown. Clearly, when a clutch is engaged
and the other completely released, a friction term equals
the engine torque (that is transmitted to the wheels),
while during slipping phases the friction depends on the
Coulomb coefficient. Therefore, in order to guarantee a
continuous transmission of the power from the engine to
the wheels during a shift, it is necessary to properly control
the normal pressure that modulates Fc. From a simulative
point of view, it is worth noticing that no chattering affects
the friction. This makes the simulation very efficient: on a
standard personal computer equipped with an Intel Core
2 Duo CPU at 2.26 GHz, and 4GB of ram, the Simulink
simulation (of 10s) takes 0.98s.

5. CONCLUSIONS

In this paper, a systematic approach for modeling complex
systems, composed by n bodies that move relatively and
are affected by dynamic and static friction, is adopted.
This technique considers together the inertial and fric-
tional properties of the system, but decouples a main
dynamics, that describes its average motion and does not
depend on friction, from n−1 relative dynamics. This sim-
plifies the initial problem and allows the use of standard
static friction models, without the need of setting all the
characteristic parameters of dynamic friction models that
do not own a clear (macroscopic) physical interpretation.
In particular, the proposed method is quite efficient from
a simulative point of view, since it does not require the
switching among several dynamic models and it does not
produce chattering when the velocities are zero or close to
zero. The effectiveness and efficiency of this friction model
has been proved by considering the simulation of a dual
clutch transmission system.
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